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Abstract. We consider models which are symmetric under time-reversal and which produce net
currents under parametrical, dichotomous, thermal excitation. The simplest is based on a three-
level system, which is the basic unit of a ‘minimal’ thermally driven ratchet. We analyse the
system’s behaviour under periodic, dichotomous temperature changes and calculate the current,
work and efficiency of the engine as functions of the upper and lower temperatures and of the
modulation period. The system’s behaviour differs greatly from a quasistatically working heat
engine (such as based on a Carnot cycle). We discuss how this behaviour arises due to the
inherently irreversible nature of the underlying process.

1. Introduction

There are at least four important reasons for considering a kinetic three-level system under
dichotomous parametrical excitation.

First, the system is related to a class of thermal ratchets [1–8], which are under extensive
investigation as models for molecular motors, possibly leading to the understanding of the
principles of muscle action [9]. Corresponding effects in artificial systems were observed
experimentally [10, 11], and the debate concerning applications to kinesin is still open [12].
The system which we present is a discrete, minimal model for a molecular ratchet; it shows
asymmetric transitions under external modulation. Secondly, the discrete system considered
belongs to a class which has recently won attention by showing coherent stochastic resonance
[13–15]. Here we are interested in a related, but somewhat different effect, namely in the
appearance of strong coupling between the high-frequency modes (here: temperature cycles)
and zero-frequency modes (here: overall current) which emerge in our linear model due
to parametrical excitation. Thirdly, the system can be viewed thermodynamically as a
machine which works between two heat reservoirs, and offers a paradigmal description of
inherent irreversibility. By this we mean that it is fundamentally different from usual heat
engines: these work as (non-ideal approximations to) reversible engines, which undergo
slow (quasistatic) changes [16]; the system we are interested in works best when the
temperature changes are sudden, and the duration of the cycles is short. Fourthly, we
are confronted here with non-equilibrium directed diffusion, an effect which offers the
possibility of experimental checks. Thus, the response of cellular molecular motors to
periodic temperature changes may provide clues to the relevance of ratchets in biological
systems.
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Figure 1. (a) The structure of the array used and (b) the construction of the elementary engine.
The arrow shows the direction of short-circuit current.

2. The model

Here we deal with a discrete model formulated within the master-equation description for
continuous-time random walks of particles on a one-dimensional lattice. This parallels the
approaches considered in [14, 15], see figure 1:

∂

∂t
pn(t) = wn−1,n(t)pn−1(t)+ wn+1,n(t)pn+1(t)− (wn,n−1+ wn,n+1)pn(t). (1)

Herepn(t) is the probability density of finding a particle at the siten at timet , andwij are
the transition rates between neighbouring sitesi andj . Under an appropriate choice of these
(time-dependent) transition rates (which then mirror the site energiesEi of a given potential)
equation (1) is a discrete version of a thermal ratchet. We are in a discrete picture, which
differs from the usual continuous description [1–8] based on the Langevin (or, equivalently
on the corresponding Fokker–Planck) equation.

We confine ourselves to a stationary and spatially homogeneous situation in which the
populationspn(t) of corresponding sites are periodic; this is depicted in figure 1(a) using
k = 3 as a period. The overall system consists of an array of elements, figure 1(b), which
are switched in succession. In the discussion we can focus on the determination of the
properties of single elements. It is of interest to know in which range of parameters the
system produces on average a directed current and thus work; for this we also calculate
the efficiency of the elements. The work consists of maintaining an uphill current against
the overlaid constant potential gradient (see figure 1). This gradient is the difference (in
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figure 1(a) denoted byU ) between the potential energies of the sites (say 1) of successive
elements.

We take the forward rates to equalwij = 1 (providedEj < Ei); the backward rates
arewji = exp(−Ei−Ej

kBT
). This thermally activated form ensures that in equilibrium detailed

balance is obeyed. We suppose (as is physically reasonable) that under temperature changes
the local thermal equilibration is much faster than the equilibration of the concentrations.
Such temperature changes lead to the breakdown of detailed balance, which mechanism
drives the engine. As may be inferred on physical grounds and as we proceed to discuss,
we find that the smallest engine which produces an overall current under thermal modulation
is based on a three-level system. A two-level system, on the other hand, does not produce
any net current; this can also be shown analytically, using the formalism we are going to
present.

We turn now to the description of the three-level element, see figure 1(b). We fix the
energy at site 1 asE = 0 and let sites 2 and 3 have energies1E and 21E respectively;
the energy of particles on site 1′ (the first site of the next element) is taken to be−U . We
denote the corresponding backward rates byx andy:

y = w12 = w23 = exp

(
−1E
kBT

)
x = w1′3 = exp

(
−21E + U

kBT

)
.

(2)

For ease of notation we setkB = 1 and take1E = 1 so that bothU andT are measured in
units of1E. Now the backward rates depend on time through the time-dependence of1E

or of T . Here we letT depend on time, a procedure which allows us to make a connection to
thermodynamics and to compare the (very unusual) properties of our highly non-equilibrium
heat engine with those of standard, equilibrium engines. Previous works concentrated on
the fascinating property of ratchets to produce an average net current from noise. Our
elementary engine has the same property and we consider here a periodic, parametrical
thermal modulation; this parallels, to some extent, the periodically rocked model of [5].
Thus we bring the engine alternatingly for times,τ , in contact with a warm (temperature
T1) and with a cold (temperatureT2) heat reservoir. Thus:

T (t) =
{
T1 2nτ < t < (2n+ 1)τ

T2 (2n+ 1)τ < t < 2(n+ 1)τ
(3)

and the period is 2τ .
Let us consider the equations obeyed by the three-level element. The momentary state

of the engine is characterized by the occupation numbers of its sites 1, 2 and 3 which we
denote byp, q andr respectively. These occupation numbers are governed by the following
system of ordinary differential equations (ODE):

ṗ = −(x + y)p + q + r ′
q̇ = yp − (1+ y)q + r
ṙ = xp′ + yq − 2r

(4)

wherer ′ is the occupation number of site 3 of the element at the left andp′ is the occupation
number of site 1 of the element at the right. In a stationary, spatially homogeneous situation
one hasr ′ = r andp′ = p. In this case alsod

dt (p + q + r) = 0 holds (conservation law),
i.e. p + q + r = constant. Taking the number of particles per engine to be unity

p + q + r = 1 (5)
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reduces equation (3) to the following closed system of two, coupled ODE

ṗ = 1− (1+ x + y)p
q̇ = 1+ (y − 1)p − (2+ y)q. (6)

Here one should remember that the transition ratesx and y depend on time through
temperature. Note that in general an element consisting ofk levels obeys a set ofk − 1
coupled ODE. This also makes clear that a two-level element leads only to an (uninteresting)
single ODE.

Now the current through the 1–2 bond of the engine is given by

j12 = py − q (7)

and hence in the stationary state the overall mean current through the elementary engine is

J = 1

2τ

∫ 2τ

0
j12(t) dt. (8)

Let us now consider the time evolution of the currentj12 during a half-period (time when
T = constant. Introducing the new variables = q+ 1−y

1−x p, the equations forp ands during
the half-period decouple:

ṗ = 1− (1+ x + y)p

ṡ =
(

1+ 1− y
1− x

)
− (2+ y)s. (9)

From equation (7) it follows thatj12 = p(y + 1−y
1−x ) − s. Furthermore, the solutions to

equation (9) for both half-periods (denoted by the indicesi = 1, 2) have the same form:

pi(t) = pi0e−Ai t + 1

Ai
(1− e−Ai t )

si(t) = si0e−Bi t + Ci
Bi
(1− e−Bi t )

(10)

where the coefficientsA = 1+ x + y, B = 2+ y andC = 1+ (1− y)/(1− x) are to be
evaluated at the correspondingTi . The values ofp0 ands0 at the beginning of a half-period
can be obtained for the stationary situation by noticing that after a full period the values of
p ands return top0 ands0, so that:

p10 = (1− e−A1τ )e−A2τ /A1+ (1− e−A2τ )/A2

1− e−(A1+A2)τ
(11)

and

s10 = (1= e−B1τ )e−B2τC1/B1+ (1− e−B2τ )C2/B2

1− e−(B1+B2)τ
. (12)

The values ofp20 and s20 can be obtained from equations (11) and (12) by interchanging
the indices 1 and 2, on the right-hand side. The mean current during the half-period
Ji = τ−1

∫ τ
0 j (t) dt is

Ji = 1

τ

[(
pi0

Ai
− 1

A2
i

)
(1− e−Aiτ )(Bi + Ci − 3)−

(
si0

Bi
− Ci

B2
i

)
(1− e−Biτ )

]
+ (Bi + Ci − 3)

Ai
− Ci
Bi

(13)

and the overall mean current obeysJ = (J1+J2)/2. Note that the first term in equation (13)
is due to a transient component of the current, while the last two are steady-state terms and
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correspond to the mean current caused by the outer potential difference,U . The explicit,
tedious but otherwise elementary calculation ofJ as a function ofT1, T2 and τ can be
entrusted to MATHEMATICA .

The overall principle of the engine’s work can be easily visualized in the limiting case
of T1→∞ andT2→ 0. At the end of the cold half-period only sites 1 and 1′ are occupied.
At the beginning of the hot half-period the occupation of all sites starts to equilibrate. This
equilibration process does not lead to any net current forkBT1 � 1E, because then the
system is essentially symmetric, since the small energy differences between sites do not
play any role. After cooling the system again, the particles from site 3 go to the right and
to the left with equal probabilities, while those from site 2 go only to the left; this gives rise
to an overall net current from 2 to 1. This picture also makes clear that, as stated above, a
spatially symmetric two-level ratchet cannot produce any current.

3. Net current, work and efficiency of the engine

Let us now discuss the results of the above equations. We start by considering the case
U = 0 and the current flowing in the system; this situation is identical to a short-circuited
three-level system. From equation (13) one infers readily that for fixedT1 and T2 the
short-circuit current,J , is negative, that it tends to a constant value forτ → 0 and that
it decays asJ ∝ τ−1 for large τ . The last feature is a clear signature of the essentially
non-equilibrium nature of the heat engine considered: it works not because it is a non-ideal
approximation to some absolutely reversible, quasistatic engine, but essentially because it
is not quasistatic and irreversible.

Let us first consider the temperature dependence of the current. For this we fix the value
of τ and considerJ as a function ofT1 andT2. Note that our dichotomous prescription,
equation (3), is (by an appropriate choice of the origin) symmetric under time-inversion.
The mean short-circuit current is invariant under this transformation. This means that for
small temperature differences1T = T1−T2 the current must be an even function of1T , a
clear sign of irreversibility. In fact for small1T one has in generalJ ∝ (1T )2, a finding
which is true in our case. We checked this explicitly, i.e. by showing from the general
forms for J (T1, T2, τ ), that for T1 = T2 = T both J and its two partial derivatives with
respect toT1 andT2 vanish.

The process that allows an elementary engine to work can be called a non-equilibrium
directed diffusion (directed diffusion in a temperature field which is homogeneous in space
but changing in time). This process is very different from a stationary thermodiffusion
situation, in which the temperature bath is constant in time but inhomogeneous in space.

After the calculation of the mean current we are in the position to evaluate the power of
the engineP = −JU (the minus sign corresponds to the fact that the engine produces net
work when the current flows to the left, against the potential differenceU ) and its efficiency
η = A/Q1, whereA = 2Pτ andQ1 is the heat absorbed from the warmer reservoir.
Neglecting all losses not connected with the work we haveQ1 = A+1E , where1E is the
change in the internal energy of the system during the half-period at the higher temperature
T1. The internal energy,E , of the system equalsE = (q + 2r)1E = (2− 2p− q)1E, and
it can be easily evaluated. We find:

1E = [(3− C1)(p10− p20)+ (s10− s20)]1E. (14)

In figure 2 we present the power of the engine as a function ofU for the values of
parametersτ = 1, T1 = 10 andT2 = 0.5, 0.7, 1.0. Notice that the power is negative for
all negativeU and for large positiveU , and it is positive in between. This is the region of
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Figure 2. The power,P , of the elementary engine as
a function of the potential difference,U . The three
curves correspond toT2 = 0.5, 0.7, 1.0, from top to
bottom, see text for details.

Figure 3. The maximal efficiency,ηmax, of the engine
as a function ofT1 − T2. Note the double-logarithmic
scales. The broken line has a gradient of 3.

parameters in which the engine produces work. Outside this region the engine works as a
‘heat transporter’: it uses the temperature modulation to enhance the heat transport from the
warm to the cold heat reservoir. In the region where it produces positive work the overall
dependence ofA onU shows a nearly parabolic behaviour, see figure 2, going through zero
at U = 0 and attaining a maximum at a (positive) valueU ∗. Increasing the temperature
difference renders this maximum higher and shifts it to largerU ∗ values. A similar picture
obtains the efficiency,η, of the engine. In figure 3 we show the behaviour of the maximal
η, ηmax as a function of1T = T1 − T2. The maximal efficiency grows as1T 3 for small
1T (which is also very different from the reversible case where, according to the Carnot’s
formula,ηmax∝ 1T ). For large1T the efficiency tends rapidly to a finite value. For fixed
T2 andτ this value does not tend monotonously to 1, as it would for a Carnot-engine, but
rather to a smaller limiting valueη∗, which is engine-specific. An interesting feature is the
surprisingly strong dependence ofη∗ on T2 for fixed T1: our machine needs a very cold
cooler rather than a very hot heater. Maximizing the value ofη with respect toτ for fixed
T1 andT2 we find, for example, that forT1 = 10 andT2 = 1ηmax= 0.196 (compared with
the Carnot value ofηmax = 0.9); the low value of the attainableηmax is a clear sign of
irreversibility. Moreover, the maximum is attained for small values of the period 2τ , far
from the quasistatic mode of the operation.

4. Conclusions

To conclude, we summarize the findings of our present work. We have presented a
simple ‘minimal’ model for a thermally driven ratchet, namely an array of three-level
elements switched in succession. We considered the behaviour of this system under
thermal, parametrical modulations. We calculated the net current, work and efficiency
of the elementary engine as functions of the upper and lower temperatures and of the
modulation period. The temperature dependencies obtained differ largely from those
of typical, quasistatically working heat engines. Furthermore, we discussed the general
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properties of the model and the connection to the inherently irreversible nature of the
underlying process.
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